On Primality of the Smarandache Symmetric Sequences
نویسندگان
چکیده
The study of primality for the Smarandache sequences represents a recent research direction on the Smarandache type notions. A few articles that were published recently deal with the primality of the direct and reverse Smarandache sequences. The primality of Smarandache symmetric sequences has not been studied yet. This article proposes some results concerning the non-primality of these symmetric sequences and presents some interesting conclusions on a large computational test on these.
منابع مشابه
Some results about four Smarandache U-product sequences
Some results about four Smarandache U-product sequences Felice Russo Micron Technology Italy Avezzano (Aq) Italy In this paper four Smarandache product sequences have been studied: Smarandache Square product sequence, Smarandache Cubic product sequence, Smarandache Factorial product sequence and Smarandache Palprime product sequence. In particular the number of primes, the convergence value for...
متن کاملDesigning with Smarandache Sequences, Part 1: Concatenation Sequences
All kinds of things can be found among integer sequences, including the weird and nonsensical. Enter Smarandache sequences (S. sequences, for short), which are integer sequences due to Florentin Smarandache and his disciples. Some S. sequence are related to number-theoretic topics. Others, at first glance (second, third, ...) seem downright silly. An example is the progressive concatenation of ...
متن کاملOn (Semi-) Edge-primality of Graphs
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
متن کاملConcatenation Sequences
All kinds of things can be found among integer sequences, including the weird and nonsensical. Enter Smarandache sequences (S. sequences, for short), which are integer sequences due to Florentin Smarandache and his disciples. Some S. sequence are related to number-theoretic topics. Others, at first glance (second, third, ...) seem downright silly. An example is the progressive concatenation of ...
متن کاملThe Primes in the Smarandache Power Product Sequences of the Second Kind
In this paper we completely determine the primes in the Smarandache power product sequences of the second kind
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014